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Abstract—In this paper we present a simple Bayesian in-
ference based single-stage quantum state tomography. Previous
approaches such as maximum likelihood estimation are compared
with Bayesian analysis and its advantages especially concerning
error bars are highlighted. We describe the underpinnings of
Monte Carlo based methods and show how they can be applied
to reconstruct a valid density matrix representing a single qubit.
We also demonstrate the formulation of qubit tomography as
a problem such that statistical packages such as Stan can be
accessed as a black-box and their results can be validated.

I. INTRODUCTION

The ability to characterize the state of a quantum system is
becoming essential with developments in research areas such
as quantum computing, communications, and metrology [1]
[2] [3]. Quantum state tomography (QST) employs a series
of measurements on unknown, identically prepared quantum
states to statistically reconstruct a density matrix that repre-
sents the state of the quantum system. Recent advancements in
QST have also precipitated the characterization of more com-
plex quantum systems such as those involving entanglement
and higher dimensions [4] [5]. QST, therefore, serves as the
cornerstone of any upcoming quantum technology [6].

QST techniques utilize sets of measurement observables,
statistical models, and quantum resources. One of the earliest
methods used simple linear transformations of measured data
to uniquely determine a quantum state. Although, this method
is straightforward, it can also reconstruct density matrices
which are Hermitian with unit trace, but violate the condition
of positive semi-definiteness due to experimental noise, and
therefore do not correspond to any physical quantum state
[7]. To ensure the validity of the reconstructed quantum state,
maximum likelihood estimation (MLE), a statistical method,
is used for tomography. A parametric function of MLE is
created which always produces a valid density matrix. MLE
is an efficient tool that converts QST to a convex optimization
problem [8]. Just like the previous method, MLE constructs a
density matrix that must completely agree with the frequencies
of POVM measurements. Only when such a state is invalid
(eigenvalue < 0), constraints of MLE force it to produce a
valid but rank deficient state (i.e. some eigenvalues are 0).
Therefore, despite the widespread usage of MLE in QST, it
suffers from similar problems which arise due to the frequen-
tists description of the statistical model. Moreover, there are no
inherent error bars associated with the estimated state in MLE
which are required to ascertain the quality of our estimate [9].

A viable solution to the problem of fitting states to agree
with probabilities generated from noisy measurements is to

move towards Bayesian statistics based QST. Bayesian mean
estimation (BME) complements the likelihood function with
a prior, which explicitly delineates our knowledge (or lack
thereof) before any experiment is performed, to produce a
valid distribution. Major benefits inherent to BME include
the presence of error bars associated with the estimated state,
and that it produces the most accurate estimation for a finite
number of copies N of the state [9] [10]. As the number of
experiments increase, the posterior distribution produced by
BME tends to become independent of the prior, and relies
more on the likelihood function. That is, BME based QST
relies more on prior knowledge in the presence of insufficient
data, and this reliance reduces with increasing data [11].

In this paper, we examine the key elements of BME and
carry out a single stage QST using only a fraction of iden-
tically prepared copies required for full scale quantum state
tomography for a single qubit. We also quantify the error of
our posterior distribution. This is in fact the first step of more
complex tomography techniques involving sequential impor-
tance sampling (SIS) algorithms. The tomography problem
is coded in Stan, a probabilistic programming language that
implements an advance version of the Monte Carlo algorithm
to efficiently traverse the posterior space.

This paper is structured as follows. We expound the basics
of Bayesian inference qualitatively, required to understand its
application to state tomography in section II. Section III briefly
explains the fundamentals of Stan. In section IV, we apply our
understanding of BME and Stan to simulate a single stage
quantum state tomography of a qubit, provide results, and
analyze our posterior. We conclude in section V.

II. APPLIED BAYESIAN INFERENCE

In Bayesian analysis, there are three key terms which in-
teract to produce a posterior distribution, p (θ|data), which is
used to make estimates about the parameter θ. The prior, p (θ),
is a valid probability distribution that explicitly represents our
pre-data (measurement) knowledge of the experiment. This
could be driven by an existing study, understanding of the
process or any other bias [12]. Depending on the amount of
reliable a priori knowledge, we can choose from weakly to
strongly informative priors.

p (θ|data) = L (θ|data)× p (θ)
p (data)

, (1)

where L (θ|data) = p (data|θ).
The likelihood function, L (θ|data), is a data driven element

which reduces the reliance of the posterior on the prior as data



increases. In L (θ|data), the data is kept fixed and parameter
θ is varied. The denominator in (1) is often intractable for
complex multidimensional models, and for practical purposes
can be thought of as a term that normalizes the product
of the prior and the likelihood to produce a valid posterior
distribution.

Since the multidimensional nature of Bayesian integrals
make analytical and computational solutions impossible (or
at least impractical), we must circumvent this process. As it
turns out, we do not need to calculate the exact probability
density function (pdf) of our posterior distribution. As long as
we can effectively sample from the product of our likelihood
and prior at sufficient points in parameter space, the relative
sampling frequency provides us with an un-normalized poste-
rior distribution. (1) can be rewritten as

p (θ|data) ∝ p (data|θ)× p (θ) . (2)

This is the key insight underlying Monte Carlo Markov
Chain (MCMC) algorithms. MCMC solvers utilize dependent
sampling to traverse the posterior. Generally, this involves
iterations of generating random samples, and at each point
in parameter space, performing an accept-reject rule which
governs whether to move to the next sample or not. Thereby
creating a Markov chain where the next step is dependent
on the current position. The frequency of samples traversed
during this process forms our approximate posterior. This
equals the true posterior distribution in the limiting case when
the number of iterations approach infinity.

Since infinite iterations are not possible, it begs the question
when does our solver approach convergence? For the purpose,
multiple Markov chains are initialized. The average of the vari-
ance of each chain, the within chain variance, and the variance
of the mean of each chain, the between-chain variance, are
calculated. When the ratio, R̂, of these variances approaches
1, our chains are said to have converged [11].

R̂ =

√
W + 1

n (B −W )

W
, (3)

where n is the total number of samples per chain, and W and
B are the within and between-chain variances, respectively.

III. OVERVIEW OF STAN

Stan implements the No-U-Turn Sampler (NUTS) version
of HMC. Stan’s MCMC solver works as a black-box that con-
veniently applies Bayesian inference on our problem. However
the problem setup is coded in Stan. This involves providing
at least 3 blocks of information for meaningful Bayesian
inference namely data, parameters and the model.

Since Stan is statically typed language, the type of data or
parameters used must be declared. In the data block, variables
are created which are used to pass data to Stan. In the
parameter block, we declare all the parameters that we want
to infer from our model. The model block is used to specify
the likelihood function and priors. Stan essentially works in
the negative log posterior (NLP) space, and hence for a new

Fig. 1. PDF of posterior distributions for θx, θy and θz . Each θ is centered
at BME, and the width of the shaded areas on the horizontal axis correspond
to 95% credible regions for N = 1000.

TABLE I
STATISTICAL SUMMARY OF QST.

θ Mean 2.5% 97.5% R̂

θx 0.41 0.38 0.44 1.0

θy 0.36 0.33 0.39 1.0

θz 0.48 0.45 0.51 1.0

sample at each step of HMC, it evaluates the following instead
of (2) [11]

log p (θ|data) ∝ log p (data|θ) + log p (θ) . (4)

IV. METHOD AND RESULTS

Any valid two dimensional density matrix, ρ, can be repre-
sented by

ρ =
1

2
(I+ ~r · ~σ) , (5)

where ~r = (rx, ry, rz) is called a Bloch vector such that
‖~r‖2 ≤ 1 and ~σ = (σx, σy, σz) [7] is a vector of Pauli
operators. Therefore to successfully perform QST, we must
determine ~r.

The first step is to perform measurements on an ensemble of
identically prepared quantum states, ρ. Measurements of qubits
involve a set of configurations a ∈ A, where measurements in
each a correspond to observing one of the finite outcomes,
|ψ〉, from a positive operator-valued measure (POVM) set,
Ma [13]. Here we perform the standard six-state tomography
on a qubit where A = {σx, σy, σz} and outcomes for a
are their eigenstates such that Ma = {|ψ1〉 , |ψ2〉} where
|ψ1〉 corresponds to the +1 eigenvalue and |ψ2〉 corresponds
to the -1 eigenvalue. Therefore, the probability of outcome



of |ψ〉 ∈ Ma is p (|ψi〉) = Tr (|ψi〉 〈ψi| ρ) for i = 1, 2
according to Born’s rule of quantum theory [14]. Then for each
configuration a we can determine the corresponding element
in ~r using the following relation

r = p (|ψ1〉)− p (|ψ2〉) . (6)

As Tr (|ψ1〉 〈ψ1| ρ) = 1− Tr (|ψ2〉 〈ψ2| ρ), (6) reduces to

r = 2× p (|ψ1〉)− 1, (7)

which means that ~r can be calculated from the projections of
ρ on the +1 eigenstates of ~σ.

Since we cannot determine p (|ψ1〉) without knowing ρ, we
prepare 3N copies of state ρ and measure σx, σy and σz on
N qubits each, and note the frequencies of outcome ni of
observing the +1 eigenstate of σi for i = x, y, z. This is the
data that we provide to Stan which treats it as three separate
studies, one for each configuration a. To estimate p (|ψ1〉) via
Bayesian inference, we declare parameters θx, θy and θz in
Stan’s parameter block to represent the probability of outcome
|ψ1〉 for σx, σy and σz respectively. For each θ, we use a
weakly informative prior centered on the positive axis of the
Bloch sphere with high variance.

We use a Bernoulli distribution where θ is used to represent
the probability of observing the +1 eigenstate. Each measure-
ment is assumed to be independent. Hence, our likelihood
function for N measurements takes the following form for
each study

L (θ|data) ∝ θni (1− θ)(N−ni) . (8)

We performed QST on a random qubit defined by the
density matrix

ρ =

(
0.4891 −0.1315 + 0.1453j

−0.1315− 0.1453j 0.5109

)
using 4 chains and 1000 HMC iterations for N = 1000.
Using the BMEs tabulated in Table 1 of the posterior PDFs
illustrated in Fig. 1 and (7), we can approximate the Bloch
vector so that ~r ≈ (−0.18,−0.28,−0.04). The log infidelity
of the reconstructed state ρ̂ is calculated to be less than -3.5.
Moreover, using the quantile values provided in Table 1, we
can see that θx, θy and θz have a 95% credible interval of
0.38 < θx < 0.44, 0.33 < θy < 0.39 and 0.45 < θz < 0.51

respectively. Values of ~R show that the chains converged
successfully.

V. CONCLUSIONS

In this work, we have formulated QST as a Bayesian prob-
lem. We have highlighted fundamentals of MCMC required
to apply Bayesian Inference. Moreover, through an example,
we have shown that it does not suffer from the drawbacks
of MLE and reconstructs a valid quantum states with easily
quantifiable error bars. Moreover, this formulation can also
be used with different tomographically complete measurement
bases to make QST adaptive.
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