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Abstract—We present a two-level adaptive quantum state
tomography protocol. On the first level, we utilize the particle
distribution at each iteration to optimize the measurement setting
of the next. On the second level, we use measurement outcomes
to periodically reduce the set of measurement settings. We
demonstrate the usefulness of this method by reporting infidelity
and its standard deviation.

I. INTRODUCTION

Characterization of quantum states has become an essential
task with the emergence of quantum technologies. It has
important implications in research areas such as quantum com-
puting, optics and communication [1]–[3]. Complete or full
quantum state tomography (QST) is the field which formally
deals with the task of statistically identifying an arbitrary
quantum state, given the availability of a sufficient amount of
identically prepared states [4], [5]. Other popular branches of
tomography include characterization of quantum logic gates
and Hamiltonian studied under Gate Set tomography and
Hamiltonian tomography, respectively [6], [7].

Given an ensemble of identically prepared qubits of ρ, QST
employs a series of measurements, and uses the outcomes
of each measurement to reconstruct another quantum state ρ̂,
which estimates ρ. Statistical quantification also requires the
description of errors in our estimate [8], [9]. As the number of
qubits measured increase, the errors in approximation decrease
since the relative frequency approaches true frequency in
probability. However, in the absence of infinitely many qubits
(which is the case in real life), we require a method that
reconstructs a physically valid quantum state which reduces
errors to below a fixed threshold (of a chosen figure of merit)
utilizing as few resources as possible.

A valid qubit is described by a density matrix which is
positive semi-definite, Hermitian with unit trace. Bayesian
inference methods are used to ensure validity of the recon-
structed state and provide its complete statistical quantifica-
tion [8]. A generic implementation of Bayesian methods use
three constituents namely prior, likelihood and evidence (or
denominator). These elements produce a posterior distribution.
Bayesian mean estimation (BME) methods use the mean of the
posterior as an estimate. A more powerful and computationally
tractable implementation of Bayesian schemes is known as
the particle filter (PF) [10]. In the quantum version of this
method, prospective states are distributed according to a prior.
After every measurement, we update the likelihood of these
particles [11].

PF methods can be made adaptive seamlessly [12], [13].
In this paper, we utilize the BME of each posterior to find

a new measurement setting. Moreover, we keep track of the
outputs in each configuration, and successively reduce this set
by eliminating elements with high entropy outcomes. In the
end, our set configurations consists of just one element, which
we demonstrate encapsulates the entire information required
to reconstruct the density matrix of the quantum state.

This paper is structured as follows. We expound the ba-
sics of PF, required to understand its application to state
tomography in section II. Section III explains the two-layered
adaptive nature of our protocol. In section IV, we apply our
understanding to simulate quantum state tomography of qubit,
provide results, and analyze our posterior. We conclude in
section V.

II. PRIMER ON PARTICLE FILTER

In the case of qubits, an arbitrary ρ can be represented in
term of the Bloch vector rrr [5]

ρ =
1

2
(I+ rrr · σσσ) , (1)

where I is a 2 × 2 identity matrix, rrr = (rx, ry, rz) ∈ R3,
and σσσ = (σσσx,σσσy,σσσz) is a vector of Pauli operators. To ensure
validity of the state, ‖rrr‖2 ≤ 1 where ‖·‖2 is the Euclidean
norm.

For QST, we initially measure ρ in configurations σσσi for
i ∈ {x, y, z}. This set of configurations varies in adaptive
protocols as we shall see in section III. We observe outcome
|`〉 for ` ∈ {+1i,−1i} for each i with probability P |`〉 =
tr (|`〉 〈`| ρ). Then the task of QST is to best approximate these
probabilities to estimate ρ.

To apply QST using PF, we initialize particles {γk} for
k ∈ {1, · · · , k} in the Bloch space based on prior distribution.
After measurement of N0 qubits in σi, and observing n`
outcomes of `, we evaluate the likelihood function

L (γk) = N0!
∏
`

tr (|`〉 〈`| γk)n`

n`!
. (2)

The distribution of the normalized likelihoods of particles
known as its weights wk forms the posterior distribution for
this iteration.

III. TWO-LAYERED ADAPTIVE METHOD

Measurement of any ρ in its own diagonal basis provides
the best possible scaling of O

(
1
N

)
[14]. In real life cases,

when the diagonal basis is not available, we can instead use
the diagonal bases of BME estimates of each iteration. In the
first layer of adaptivity, we initialize our measurement set with



Pauli matrices. After each measurement, we apply a unitary on
our original set based on the BME of the posterior distribution.
This is analogous to rotating the measurement set such that the
diagonal basis of one of the elements of our set (on average)
more closely approximates the diagonal basis of ρ [13].

As these iterations continue, we observe that measurement
outcomes of two of the operators are n` ≈ N0

2 . In information
theoretic terms, these configurations maximize entropy. For
QST, if we visualize the Bloch sphere in terms of rotated axis
of σ̃σσ, then ρ̂ lies close to only one axis. Using this insight,
we understand that measurements on the operators which
maximize entropy in this setting will not provide us with any
meaningful information, and hence can be eliminated from our
measurement set. In this manner, we successively reduce our
measurement set till we only have one element. This element
encapsulates the entire qubit information required for QST in
this rotated Bloch space. This forms the second layer of our
adaptive protocol.

IV. RESULTS

In this section, we demonstrate the performance of our
method detailed previously. We simulate 200 random two
dimensional mixed states for 1000 iterations of N0 = 50 shots
each. For We report infidelity I between the estimated states
ρ̂ and true states ρ defined as

I (ρ, ρ̂) = 1−
√

tr (
√
ρρ̂
√
ρ). (3)

The infidelity captures the idea of closeness between ρ and
ρ̂ such that I (ρ, ρ̂) = 0 if and only if ρ = ρ̂. Figure 1
demonstrates the scaling of infidelity of our protocol for
against iterations.

Fig. 1. Infidelity for the proposed protocol averaged over 200 mixed states
with N0 = 50 shots per iteration. The red shaded region indicates 16 % and
84% quantiles over all measurements.

V. CONCLUSIONS

In this work, we formulated QST as a PF problem. We have
highlighted fundamentals of PF required to apply Bayesian
Inference in the domain of state tomography. Moreover, we
have we have provided a novel adaptive scheme that optimizes
the measurement configurations and successively reduces the
cardinality of the measurement set. The implications of this
method are more pronounced for higher dimensional qudits
where an informationally complete measurement set can be
very large. This formulation, therefore, not only improves
scaling but also makes higher dimensional problems compu-
tationally tractable.
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