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Abstract—Vision-based defect detection of manufactured parts
is a process that largely requires manual inspection and ver-
ification. This is a laborious task which uses precious worker
time as well as being repetitive and mundane. We tackle the
problem of fine-grained defect detection on shiny and reflective
metal diaphragm seals. We propose to use a convolutional neural
network (CNN) that can detect defects on images of metal
surfaces with concentric rings texture. Our proposed pipeline
consists of a localization and a detection stage. The localization
module isolates a circular region of interest (ROI) in an image
by using a CNN-based circle detector. A detection module then
predicts a segmentation map of the ROI by segmenting out
each detected defect. Defected parts are then identified by
aggregating defected segments and thresholding total defected
area to a certain value. This value is chosen by domain experts.
The developed system is deployed in a real industrial setting
and continuous worker feedback is used for evaluation. We
demonstrate the superiority of our approach through extensive
experimentation and ablations studies.

Index Terms—Defect Detection, Neural Networks, Industrial
Data

I. INTRODUCTION

Manufacturing industry hold high potential for the ap-
plication of artificial intelligent (AI) technologies. With the
introduction of the fourth industrial revolution, Industry 4.0,
AI and and machine learning (ML) are being used increas-
ingly for automation of various manual tasks. One such task
is inspection of manufactured parts for defects [1]. Defect
detection is one of the most common activities during a pro-
duction process. Defects are defined as any damage to the part
during production. There are often multiple functional tests
in place within a process to detect defected parts, however,
minute cosmetic defects such as scratches or blemishes do
not affect the functionality of the part and therefore have to
be manually inspected. This is a time consuming and laborious
task. Moreover, it is not possible to achieve consistent quality
management since inspection criteria is different for each
worker and dependent on “human” factor such as mood,
tiredness and boredom. Therefore an automated inspection
system is desirable.

We propose a convolutional neural network based approach
to automatically classify parts as defected or nominal. Our
problem is challenging since we tackle shiny metal membranes
which are highly reflective and prone to lighting artifacts. We
adopt a [2] to the membrane dataset and show the efficacy

of this architecture in relation to multiple others. We further
apply explainable AI techniques, namely GradCAM and RISE,
to build trust and faith in the model [3]–[5]. We find that
our method saves time, introduces consistency and generally
enhances the inspection process resulting in more reliable
products and higher customer satisfaction.

In our problem, we require no specialized hardware, and
any arbitrarily shaped scratch visible to the human eye counts
as a defect.

II. RELATED WORK

Over the past decade, deep learning frameworks have been
applied successfully to a myriad of problems including, but not
limited to, classification, detection and segmentation [6]–[8].
Now deep learning has become a commercial necessity due to
its ability to automate mundane processes. Inspired by these
successes, we tailor popular networks for the classification
of defective membranes, removing human input entirely. This
problem persists especially in manufacturing industries, where
defect detection is still an expensive process requiring human
intervention.

Historically, and in some industries to this day still, defect
detection has been carried out by human experts. Due to the
laborious nature of this work, some degree of automation is
required. In early works, images were processed and analysed
using conventional image processing methods. These include
edge detection algorithms, thresholding gray-scale images
and image segmentation [9], [10]. However, most of these
techniques are only effective for specialized cases such as
where the shapes of defects must be consistent.

The major drawback of this family of methods is that
they are not robust against noise or variation in the input,
which exist very commonly in an industrial setting. Classical
machine learning techniques are a better alternative because
they offer more robustness to noise. Zhang et al. [11] proposed
multi-calss SVM for the detection of surface defecst in shiny
metals. For an agriculture relate application, Qingzhong et
al. [12] applied small neural networks to detect and segment
defects in apples. Iker et al. [13] deployed decision tress
to recover surface information as a step in high-precision
foundry. However, all these methods rely on hefty feature
extraction and/or pre-processing and still do not generalize
sufficiently well to unseen data. This is best exemplified in



Fig. 1. Topology of the proposed method. (a) A raw input image is centered and cropped to fixed dimensions using the coordinates of the membrane center
found by applying Hough transform. (B) The DenseNet feature extractor consists of four dense blocks (DB), transition layers (blue blocks), and direct and
skip connections represented with solid and dashed arrows. The black arrow represents a 7 × 7 global average pool followed by a vectorization of the 2-D
array [ref]. (c) The modified classifier is a fully-connected neural network with the last two layers of sizes 256 and 2, respectively. The model outputs the
probability of the membrane in the image being defective.

[11], which achieves a training accuracy of 100% but a testing
accuracy of only 85%.

In recent times, deep learning has been applied successfully
for facial recognition, fault detection, classification, segmenta-
tion, and a host of image-related applications. Deep learning
has been proven to be robust against lightning, backgrounds,
shapes and sizes, in its ability to recognize patterns in images
[14]. These qualities are pivotal for defect detection and were
left desired by the methods before.

There has also been extensive research on the topic of defect
detection using deep learning. However, most of it has been
for highly specialized cases including pavement defects [15],
fabric defects [16], and other industrial applications [12]. A
more relevant and recent work by Zhufeng et al. [17] proposed
the use of Mask R-CNN for the detection and segmentation
of defects in architectural glass panels. They reported 96.5%
mean average precision (mAP) with IOU50. However, they
require specialized hardware to take microscopic images of the
panels and their mAP values reduced to 65.3% with IOU75.

III. METHODOLOGY

Our pipeline is developed for the automatic classification of
good and defective of shiny and reflective diaphragm seals. A
fixed camera unit in an industry is set up which takes full-size
images of single units of membranes. In the pre-processing
stage, we deduce the center of the concentric circles on the
surface of the membranes using Hough transform to center the
membranes in the images. We crop the output such that the
inputs to our network are square images. Our pipeline consists
of a preprocessing stage followed by a classification module
C as demonstrated in Fig. 1.

A. Defect Classification C
This module functions as a binary classifier that classifies a

membrane as either good or defective. Input to this module is
a centered image with dimension H ×W × 3, and output is
a label 1 or 0, specifying good and defective, respectively. A
membrane is considered defective if there exists even a single

scratch on its surface, irrespective of the shape and size, visible
to the human eye.

For this module, we use a DenseNet-121 [2], [18], pre-
trained on ImageNet with a top-1 error of 25.35%. We modify
the DensNnet classifier by supplanting with our own: Two
fully-connected (FC) layers (1024, 256) − (256, 2). The first
FC is followed by a ReLU activation function and a dropout
with probability 0.25, while the second is followed by a
LogSoftmax function. The output of the module is given as

pi = C (Ii) , (1)

where Ii is the index of the ith input image and pi is a two-
element prediction vector.

Our choice of a pretrained DenseNet allows the training of
our network to be relatively inexpensive and quick. Moreover,
we retain the benefits of the densely connected convolutional
network. In our training process, we only optimize the weights
of the new classifier. The negative log-likelihood loss function
L used to train this architecture is defined as [19]:

L (y) = − 1

N

N∑
j=1

log (pj [y]) , (2)

where y = argmax pj and N is the batch size.

IV. EXPERIMENTS

We used PyTorch [18] for our implementation. All networks
were trained on a single Nvidia RTX 2060 (?) graphics card.

A. Dataset

For this work, we introduce a membrane defect detection
(MDD) dataset D, which consists of 400 nominal and 400
defective membranes of size 1920× 1080, hereby referred to
as subset A and B, respectively. For subset B. we use the web-
based open source Computer Vision Annotation Tool (CVAT)
[20] to annotate the region of interest (ROI) using three points
as shown in Fig. 2. These annotations are verified by industry
experts.
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Fig. 2. Dataset D with green dots’ annotations for the region of interest.

As a pre-processing step, we apply the Hough transform
on each element of D to identify the center ci for i ∈
{1, 2, · · · , 800} of the concentric rings. Using the annotations
of B, we also found the maximum diameter dmax of the
ROI of the membrane to be less than 1200 pixels. Using ci
and dmax, we center and crop our raw images. As a final
step, we pad zeros to each image to ensure each element is
sized 1200 × 1200. We notate this dataset with D1. We also
use the ROI annotations om D1 to extract the ROI from the
background. We notate this dataset with D2.

B. Evaluation Metric

We report the training loss with respect to epochs, and
the cross validation classification accuracy and the confusion
matrices of the test sets for both D1 and D2. Moreover, we
also provide GradCAM and RISE results to help inspect the
focus of our networks when trained with D1 and D2.

V. RESULTS AND DISCUSSION

We used datasets D1 and D2 to train module C, separately.
We divide each dataset using a 90 − 10 train-test split. Thus
our testset consists of 80 randomly selected images from the
dataset. Of the training set, we allocate 10% of the datapoints
for validation of the model during training.

Fig. 3 and 4 demonstrate the training and validation losses
for C with datasets D1 and D2, respectively. In all experiments
considered in this paper, we train our model for 400 epochs,
save the parameters with the best validation loss, and evaluate
the accuracy of the testset on these parameters. The test
accuracy of C is 96.5% with D1 and 97.0% with D2.

We also explore explainable AI techniques, namely, Grad-
CAM and RISE to perform a more nuanced analysis of
the networks. Both these techniques indicate that our model
assigns notably more significance to the ROI as exemplified
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Fig. 3. 5-fold cross-validation losses when C is trained for 400 epochs using
dataeset D1.

by Fig. 5. Moreover, in the absence of the background as in
D2, C tends to concentrate more on the defective regions.

Considering the advantages offered by D2, we train multiple
models on this dataset. The fully-connected layers of these
models have been replaced with our modified classifier. We
note that VGG-19 and DenseNet-201 offer slight improve-
ments over DenseNet-152, while the remaining models per-
form poorly. The cross-validation accuracy of these models is
summarized in Table I.

TABLE I
PERFORMANCE OF MODELS ON D2

Models Accuracy (%)
DenseNet-121 97.00
DenseNet-201 98.00

VGG-19 98.50
ResNet-152 79.00
EfficientNet 67.50

VI. CONCLUSION

In this paper, we address the task of automatic detection of
arbitrarily shaped defects using a customized deep learning ar-
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Fig. 4. 5-fold cross-validation losses when C is trained for 400 epochs using
dataeset D2.

chitecture. Substantial portions of these models are pre-trained,
and only the parameters of our classification sub-module is
optimized, making are method considerably resource efficient
and computationally inexpensive, We have also demonstrated
that our pipeline supports multiple deep learning architectures.
Moreover, we have presented a solution to a specific, real-
world laborious problem, which was not dealt with previously.
Our topology performs just as well or better than contemporary
deep learning solutions for similar tasks. We further provide
a layer of interpretability of our framework using explainable
AI techniques, and utilize the insights for comparison of the
datasets. Lastly and most importantly, the high degree of ac-
curacy without the need for specialized equipment makes our
framework readily deployable in industries saving invaluable
time and cost.
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