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Abstract—In this paper, we present a neural network quantum
state tomography scheme, which offers improvement in gener-
alization to unseen data over conventional methods. Quantum
state tomography (QST) is a resource intensive task and requires
prohibitively large processing for even moderately sized quantum
systems. Here, we perform the tomography of a 4-qubit 2-local
Hamiltonian with true and estimated expectations with respect
to a small set of observables, which is sufficient to achieve high
fidelity. This method is scalable to larger states and Hamiltonians
with arbitrary structures.

I. INTRODUCTION

The ability to characterize quantum states allows us to
benchmark the efficacy of quantum devices. Therefore it forms
one of the fundamentals of quantum research with various
application including, but not limited to, quantum informa-
tion, communication and computing. This field of research
is formally known as quantum state tomography (QST) [1],
[2]. At the heart of QST, we perform measurements on the
copies of an unknown and arbitrary quantum state and use the
information gained from the outcomes to estimate the state.
Given an infinite copies of a unique quantum state, QST is
trivial. However in the real world, there is a limitation on
the number of resources. As the number of qubits increase,
the dimension of the quantum state grows exponentially.
Even for modestly high dimensions, post-processing becomes
intractable by most methods.

More concretely, QST methods generally either perform a
fixed number of measurements on a state ρ given a static
measurement configuration and post-process the information
gained for estimation [3], [4] or apply some adaptive algorithm
which does the same but changes the measurement setting
periodically. The latter method is said to be adaptive [5]–[7].
Depending on the statistical scheme, the estimate ρ̂ can be a
good or bad approximate of ρ. However, as the number of
measurements increase, generally the accuracy of the estimate
increase as well because the relative frequency approaches
true frequency in probability. So one aim of QST is to find a
method that improves the accuracy of the estimate for a finite
amount of resources.

One method that reduces the required resources is QST
via reduced density matrices (RDMs). RDMs are accurate
and powerful since they utilize local measurements. RDMs
have been used for QST of ground state of local Hamil-
tonians. A many-body Hamiltonian is said to be k-local if
H =

∑
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Fig. 1. Complete process of neural network quantum state tomography. An
esnemble of ground states ρ are measured using a set of defined observables.
Noise is added to each element in this set. Neural network is trained to predict
the coefficients of the Hamiltonian H given noisy measurements as input. ρ̂
is an estimate of the true ground state ρ.

at most k particles. Only a polynomial number of parameters
are required to completely characterize such a system. Since,
generally, the ground states can encode the information of the
entire system, only k-local measurements are required for QST
[8], [9].

QST via machine learning has burgeoned in the past few
years. Currently extensive research on exploring popular deep
learning architectures for QST is ongoing. This includes
simple fully connected (FC) neural networks, recurrent neural
networks (RBM and LSTMs), and more recently, generative
adversarial networks [10], [11]. Neural networks (NNs) have
been used for regression of data with high-dimensional fea-
tures. The task of state reconstruction can be reformulated as a
regression problem to make use of NNs to reconstruct ground
states of local Hamiltonians.

In existing literature, FC NNs have been used for local-
measurement-based QST of multiple qubits. In this paper, we
propose improvements which help the model generalize better
to noisy data for 4-qubit ground states of 2-local Hamiltonians
[12]. However, our method is general and can be extended
for any Hamiltonian. We further investigate how this method
scales with respect to the main resource, i.e., copies of the
quantum state.

This paper is structured as follows. We provide details
of state preparation, model architecture, and overall scheme
in section II. In section III, we apply our understanding to
simulate QST via NN of 4-qubit ground states of 2-local
Hamiltonians, provide results, and discuss their significance.
We conclude in section IV.



q0

q1

q2

q3

Fig. 2. configuration of the 4-qubits states. Each qi represents a qubit and
each qubit interacts with the other.

II. METHODOLOGY

A. Problem Description
The 4-qubit 2-local Hamiltonian H is defined as

H =

4∑

i=1

∑

1≤k≤4

wi
kσ

i
k +

∑

1≤i≤j≤4

∑

1≤n,m≤3

J ij
nmσi

n ⊗ σj
m (1)

where σ1, σ2, σ3 and σ4 are the Pauli matrices X, Y and Z,
and the identity matrix respectively. We denote the set of
Hamiltonian coefficients as h =

{
wi

k, J
ij
nm

}
. The ground state

configuration can be visualized in Fig. 2.
The basis set for H is BBB = {σm ⊗ σn : n+m ̸= 8}.

We further denote ρ to be the ground state of H , i.e., the
density matrix of the eigenvector corresponding to the smallest
eigenvalue of H . We define the set of true expectations of the
ground state based on the local observables in the set B as
MMM = {sijm,n : s

ij
m,n = tr (trij ρBm,n), Bm,n ∈ BBB, 1 ≤ i < j

≤ 4, 1 ≤ n,m ≤ 4}, where trij ρ is the partial trace of ρ with
respect to the remaining indices.

Given the expectation values (true values or estimations) of
the observable on the ground state, we want to map MMM → ĥ,
where ĥ is an estimate of h. Note that since our goal here is
to reconstruct ρ and not H , our estimate ĥ need not be very
accurate. However, the ground state ρ̂ of Ĥ with respect to ĥ
must be a good estimate of ρ.

B. State Preparation
In the section, we describe the method for generating data

required to train the FC NN. For our NN, our input is
the expectation with respect to the set BBB. The number of
input neurons equals |MMM |. Similarly, since we estimate h, the
number of output neurons equals |h|.

To generate a single point of the training data, we sample
the multivariate normal distribution once to get coefficients h
of the Hamiltonian. For each experiment, we generate 5×104

random Hamiltonian coefficients for training and 5× 103 for
testing. We further randomly choose 20% of the training data,
and allocate it for validation. When we train our NN to find
the true expectations, our target is MMM corresponding to each
h. Moreover, since we want to analyze the performance of
our NN with respect to the number of copies of ρ, N , we
create further target sets where each element of the target set
is the relative frequency when N copies are measured in the
observable Bm,n.
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Fig. 3. Neural network (NN) quantum state tomography with true and
observed expectations averaged over 5 × 103 quantum states. (a) The mean
fidelity of the maximum likeihood estimation and NN [12] is compared to
our modified network with better generalization. As the percentage of noise
is increased in the measured data, the advantage of our method becomes more
pronounced. (b) The mean fidelity of our method as the number of copies of
ρ used to calculate the expectations in the dataset is increased. The fidelity
quickly saturates to the maximum achieved fidelity with true expectations.

C. Fully Connected Neural Network

Now that we know what our inputs and targets are, in this
section we will discuss the details of our NN architecture.
For the 4-qubit 2-local Hamiltonian given by 1, |MMM | = |h| =
66 which is the number of input and output neurons of our
network. We use a fully connected feedforwad network i.e.,
all neurons in one layer are connected to each neuron is layer
before and after it. We use three hidden layers of sizes 300,
1500 and 300 in that order. To introduce non-linearity, we
use a rectified linear unit (ReLU) at the out put of each layer
except for the last. Moreover, we use mean square error as
our loss function and Adam as our optimizer. The learning
rate is set to 10−3. To improve the generalization capability
of our model, we found that weight decay of 10−4, a dropout
of 5 × 10−3 after each layer and a batch size of 500 to be
optimal after hyperparameter optimization.



III. NUMERICAL RESULTS

In this section, we demonstrate the performance of our NN
detailed previously. We report the fidelity, F , of our estima-
tions ρ̂ of the ground states ρ of the numerically generated
4-qubit 2-local Hamiltonians. We define the fidelity as

F (ρ, ρ̂) =
√
tr (

√
ρρ̂

√
ρ).

Fidelity captures the idea of closeness of one state to another.
F (ρ, ρ̂) = 1 only when ρ = ρ̂.

Fig. 3(a) compares the performance of maximum likelihood
estimation (MLE), neural network [] and our method when
noise in injected into the dataset MMM . For each measurement in
the dataset, a scaled random sample from N (0, 1) is added.
The percentage scaling termed noise forms the abscissa of the
figure. This figure demonstrate the robustness of our more
generalized NN compared to regular NN and conventional
MLE estimates. The difference is more pronounced as the
noise increases.

In Fig. 3(b), we measure multiple copies of ρ to estimate
relative frequencies. These relative frequencies are then used to
calculate expectations with respect to each observable. When
we train our NN on this new dataset, the fidelity increases as
the number of copies measured increase (blue). The vertical
bars on the blue curve represent the variance of the fidelity
the samples. The plot is averaged over 5 × 103 samples of
the test set. For comparison, the red dashed line representing
the performance of the network with the idea dataset MMM is
plotted.

IV. CONCLUSIONS

In this work, we formulated QST as a regression problem so
that we can use neural network to reconstrcut quantum states.
We provide details of the dataset, architecture and optimized
hyperparameters required to reproduce results. Moreover, we
have demonstrated that our model is more robust against noise.
We further show that our model can estimate states to high

accuracy with meager quantum resources. This scheme can
be used for tomography of any Hamiltonian.
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